Rutgers University: Algebra Written Qualifying Exam January 2005: Day 1 Problem 8 Solution

Exercise. Prove that no group of order 30 is simple.

Solution.

Let G be a group of order 30 . We want to show that there is a normal subgroup of G that is not $\{e\}$ or G.

$$
30=2 \cdot 3 \cdot 5
$$

By the third Sylow theorem,

$$
\begin{array}{lllll}
n_{3} \equiv 1 & \bmod 3 & \text { and } & n_{3} \mid 10 & \Longrightarrow
\end{array} \quad \begin{aligned}
& n_{3}=1 \text { or } 10 \\
& n_{5} \equiv 1
\end{aligned} \bmod 50 \begin{array}{lll}
\text { and } & n_{5} \mid 6 & \Longrightarrow
\end{array} \quad \begin{aligned}
& n_{2}=1 \text { or } 6
\end{aligned}
$$

If there is only $n_{3}=1$ Sylow 3 -subgroups, then the Sylow 3 subgroup is normal in G by the second Sylow theorem.
$\Longrightarrow G$ is not simple

Otherwise, $n_{3}=10$, and G has $10(3-1)=20$ elements of order 3 .
There are $30-20=10$ remaining elements in G
\Longrightarrow there cannot be $6(5-1)=24$ elements of order 5
$\Longrightarrow n_{5} \neq 6$
$\Longrightarrow n_{5}=1$
\Longrightarrow there must be only one Sylow 5 -subgroup
\Longrightarrow the Sylow 5 subgroup is normal in G by the second Sylow theorem
$\Longrightarrow G$ is not simple
Thus, no group of order 30 is simple.

