Rutgers University: Algebra Written Qualifying Exam January 2005: Day 1 Problem 8 Solution

Exercise. Prove that no group of order 30 is simple.

Solution.							
Let G be a group of order 30. We want to show that there is a normal subgroup of G that is not $\{e\}$ or G.							
$30 = 2 \cdot 3 \cdot 5$							
By the third Sylow theorem,							
n_3	$\equiv 1$	mod 3	and	$n_3 \mid 10$	\Rightarrow	$n_3 = 1 \text{ or } 10$	
n_5	$\equiv 1$	mod 5	and	$n_5 \mid 6$	\Rightarrow	$n_2 = 1 \text{ or } 6$	
If there is only $n_3 = 1$ Sylow 3-subgroups, then the Sylow 3 subgroup is normal in G by the second Sylow theorem. $\implies G$ is not simple							
Otherwise, $n_3 = 10$, and G has $10(3 - 1) = 20$ elements of order 3.							
There are $30 - 20 = 10$ remaining elements in G							
\implies there cannot be $0(5-1) = 24$ elements of order 5 $\implies n_7 \neq 6$							
$\implies n_5 \neq 0$ $\implies n_5 = 1$							
\implies there must be only one Sylow 5-subgroup							
\implies the Sylow 5 subgroup is normal in G by the second Sylow theorem							
\implies G is not simple							
Thus, no gr	Thus, no group of order 30 is simple.						